Skup podataka: supporting-data-code-1.zip, 1017.77 KB Pravo pristupa: Otvoren pristup Opis datoteke: Part one - Supporting data and code (engleski)
Skup podataka: supporting-data-code-2.zip, 1017.75 KB Pravo pristupa: Otvoren pristup Opis datoteke: Part two: Supporting data and code (engleski)
Dokumentacija: readme.txt, 387 bytes Pravo pristupa: Otvoren pristup
Prijavite se u repozitorij kako biste mogli spremiti objekt u svoju listu.
Citirajte ovaj rad
Kopriva, I., Brbić, M., Tolić, D., Antulov Fantulin, N. i Xinjian, C. (2019). Fast clustering in linear independent 1D subspaces: segmentation of multi-channel images with high spatial resolution [Skup podataka]. https://urn.nsk.hr/urn:nbn:hr:241:579539.
Kopriva, Ivica, et al. Fast clustering in linear independent 1D subspaces: segmentation of multi-channel images with high spatial resolution. Institut Ruđer Bošković, 2019. 23.01.2025. https://urn.nsk.hr/urn:nbn:hr:241:579539.
Kopriva, Ivica, Marija Brbić, Dijana Tolić, Nino Antulov Fantulin, i Chen Xinjian. 2019. Fast clustering in linear independent 1D subspaces: segmentation of multi-channel images with high spatial resolution. Institut Ruđer Bošković. https://urn.nsk.hr/urn:nbn:hr:241:579539.
Kopriva, I., et al. 2019. Fast clustering in linear independent 1D subspaces: segmentation of multi-channel images with high spatial resolution. Institut Ruđer Bošković. [Online]. [Citirano 23.01.2025.]. Preuzeto s: https://urn.nsk.hr/urn:nbn:hr:241:579539.
Kopriva I, Brbić M, Tolić D, Antulov Fantulin N, Xinjian C. Fast clustering in linear independent 1D subspaces: segmentation of multi-channel images with high spatial resolution. [Internet]. Institut Ruđer Bošković: , HR; 2019, [pristupljeno 23.01.2025.] Dostupno na: https://urn.nsk.hr/urn:nbn:hr:241:579539.
I. Kopriva, M. Brbić, D. Tolić, N. Antulov Fantulin i C. Xinjian, Fast clustering in linear independent 1D subspaces: segmentation of multi-channel images with high spatial resolution, Institut Ruđer Bošković, 2019. Citirano: 23.01.2025. Dostupno na: https://urn.nsk.hr/urn:nbn:hr:241:579539.
PRIRODNE ZNANOSTI Matematika Primijenjena matematika i matematičko modeliranje
Sažetak (engleski)
Algorithms for subspace clustering (SC) such as sparse and low- rank representation SC are effective in terms of the accuracy but suffer from high computational complexity. We propose algorithm for SC of (highly) similar data points drawn from union of linear independent one-dimensional subspaces with computational complexity that is linear in number of data points. The algorithm finds a dictionary that represents data in reproducible kernel Hilbert space (RKHS). Afterwards, data are projected into RKHS by using empirical kernel map (EKM). Segmentation into subspaces is realized by applying the max operator on projected data. We provide rigorous proof that for noise free data proposed approach yields exact clustering into subspaces. We also prove that EKM-based projection yields less correlated data points. Due to nonlinear projection, the proposed method can adopt to linearly nonseparable data points. We demonstrate accuracy and computational efficiency of the proposed algorithm on synthetic dataset as well as on segmentation of tissue components from image of unstained specimen in histopathology.